
Maiar: A Composable, Plugin-Based AI Agent
Framework

Uranium Corporation

February 11, 2025

Abstract

Maiar is a powerful framework for building AI agents that introduces a novel
plugin-based architecture inspired by Unix pipes. By abstracting AI agent func-
tionality into modular, composable plugins and leveraging dynamic LLM-driven
decision making, Maiar enables developers to build flexible, extensible AI systems
without being constrained by rigid workflows or monolithic architectures.

1 Introduction

The field of artificial intelligence is experiencing rapid evolution, particularly in the de-
velopment of AI agents that can interact with various systems and services. However,
current approaches to building AI agents often suffer from rigid architectures, monolithic
codebases, and inflexible workflows that make it difficult to adapt and extend functional-
ity as requirements evolve. This challenge is particularly acute as AI capabilities expand
and use cases diversify, requiring frameworks that can seamlessly incorporate new features
while maintaining system coherence.

Maiar addresses these limitations by introducing a novel, plugin-based architecture
inspired by Unix pipes. The framework is built around the thesis that AI agents pri-
marily consist of three major steps: data ingestion and triggers, decision-making, and
action execution. Rather than implementing these components in a tightly coupled man-
ner, Maiar abstracts them into a modular, plugin-based system where developers can
define triggers and actions as standalone components while the core runtime dynamically
handles decision-making through LLM-assisted reasoning.

This approach represents a fundamental shift in how AI agents are constructed. In-
stead of predetermined workflows, Maiar produces emergent behavior by dynamically
selecting and composing relevant plugins based on context. This enables AI agents to
evolve and adapt without requiring extensive rewrites of core logic, while maintaining the
reliability and predictability necessary for production systems.

2 Background and Related Work

Recent advances in AI agent frameworks have made significant strides in making AI sys-
tems more accessible and powerful. Notable among these is Eliza [1], which pioneered
several key concepts in modern AI agent architectures. Eliza’s provider-action-evaluator

1

chain introduced a structured approach to building AI agents, demonstrating how com-
plex behaviors could emerge from well-defined architectural patterns.

However, while Eliza made groundbreaking contributions to the field, its rigid archi-
tectural constraints present limitations for certain use cases. The fixed provider-action-
evaluator chain, while elegant in its simplicity, can become a constraint when developers
need to implement more complex interaction patterns. For example, adding pre-action
evaluators or post-evaluator providers requires fundamental changes to the core architec-
ture, as the system wasn’t designed for such flexible compositions.

Traditional approaches to building AI agents have typically followed one of several
patterns, each with its own limitations:

• Fixed Pipeline Architectures: Systems like Eliza implement a predetermined
chain of operations. While this approach provides clarity and predictability, it can
limit the emergence of complex behaviors that arise from more flexible compositions.

• Monolithic Architectures: Many frameworks implement agent logic as a single,
tightly coupled system. While this approach can be effective for simple use cases,
it becomes increasingly difficult to maintain and extend as the system grows.

• Rule-Based Systems: Some frameworks rely heavily on predefined rules and
decision trees to determine agent behavior. While these systems can be predictable
and easy to debug, they lack the flexibility to handle novel situations.

Our thesis is that by making the building blocks simpler and more composable, we
can enable even more complex emergent behaviors than those possible with fixed ar-
chitectural patterns. This insight draws inspiration from Unix pipes [2], where simple,
single-purpose tools can be combined in countless ways to create sophisticated work-
flows. Just as Unix pipes enable processes to communicate through a simple read-write
interface without knowing the details of their communication channel, Maiar’s plugins
communicate through a standardized context chain that abstracts away the complexity
of inter-plugin interactions.

Maiar builds upon these foundations while addressing their limitations through several
key innovations:

• Plugin-First Architecture: By treating every capability as a plugin, Maiar
achieves true modularity without sacrificing system coherence.

• Dynamic Pipeline Construction: Rather than enforcing a fixed chain of opera-
tions, Maiar allows dynamic construction of processing pipelines based on context
and requirements.

• Unix-Style Composition: Drawing inspiration from Unix pipes, Maiar enables
seamless composition of plugins through a standardized context chain interface.

3 Technical Overview

Maiar’s architecture is built around three core principles: modularity through plugins,
dynamic execution through LLM-driven decision making, and composability through
context chains. This section details the key components and their interactions.

2

3.1 Core Architecture

The framework consists of several key components:

• Runtime: The central orchestrator that manages plugins, handles the event queue,
and provides essential services for plugin interaction.

• Plugin System: A flexible architecture where each plugin can provide triggers
(event listeners) and executors (actions).

• Model Provider System: An abstraction layer for integrating various Language
Models (LLMs) with standardized interfaces.

• Memory Provider System: A flexible storage system for maintaining conversa-
tion history and context across interactions.

3.2 Plugin Architecture

Plugins in Maiar follow a Unix-inspired pipeline architecture where:

• Data flows through a sequence of operations

• Each plugin acts as an independent unit

• Plugins can be composed to create complex behaviors

• Context is passed and transformed along the chain

3.3 Context Chain

The context chain is central to Maiar’s pipeline architecture:

[Trigger] → [Initial Context] → [Executor 1] → [Executor 2] → [Response]

Each step in the pipeline can:

• Read from the context

• Modify or enhance the context

• Pass the modified context forward

3.4 LLM Integration

Maiar’s model provider system offers a simple interface for integrating any Language
Model:

interface ModelProvider {

init?(): Promise<void>;

getText(prompt: string, config?: ModelRequestConfig): Promise<string>;

}

This simplicity enables:

• Easy integration of new LLM providers

• Custom provider implementations

• Wrapping existing providers to add functionality

3

4 Implementation Details

This section provides a detailed look at implementing and using Maiar in practice.

4.1 Installation and Setup

Getting started with Maiar is straightforward:

Create a new project

mkdir my-maiar-agent

cd my-maiar-agent

pnpm init

Install core dependencies

pnpm add @maiar-ai/core @maiar-ai/model-openai \

@maiar-ai/memory-sqlite @maiar-ai/plugin-express \

@maiar-ai/plugin-text dotenv

4.2 Basic Implementation

A minimal Maiar implementation requires:

import "dotenv/config";

import { createRuntime } from "@maiar-ai/core";

import { OpenAIProvider } from "@maiar-ai/model-openai";

import { SQLiteProvider } from "@maiar-ai/memory-sqlite";

import { PluginExpress } from "@maiar-ai/plugin-express";

import { PluginTextGeneration } from "@maiar-ai/plugin-text";

import path from "path";

const runtime = createRuntime({

model: new OpenAIProvider({

apiKey: process.env.OPENAI_API_KEY,

model: "gpt-3.5-turbo"

}),

memory: new SQLiteProvider({

dbPath: path.join(process.cwd(), "data", "conversations.db")

}),

plugins: [

new PluginExpress({ port: 3000 }),

new PluginTextGeneration()

]

});

runtime.start();

4.3 Creating Custom Plugins

Plugins in Maiar are highly customizable. A basic plugin structure includes:

4

• Triggers: Event listeners that determine when the agent should act

• Executors: Actions that the agent can perform

• Context Handlers: Functions for modifying the context chain

Example of a custom plugin:

class CustomPlugin implements Plugin {

readonly id = "custom-plugin";

readonly name = "Custom Plugin";

readonly description = "Handles custom functionality";

async init(runtime: Runtime): Promise<void> {

// Plugin initialization logic

}

getTriggers(): Trigger[] {

return [

{

id: "custom-trigger",

match: (event) => event.type === "custom",

handle: async (event) => {

// Trigger handling logic

}

}

];

}

getExecutors(): Executor[] {

return [

{

id: "custom-action",

execute: async (context) => {

// Action execution logic

}

}

];

}

}

4.4 Memory Management

Maiar provides a flexible memory system for maintaining conversation state:

interface MemoryProvider {

storeMessage(message: Message, conversationId: string): Promise<void>;

getMessages(options: MemoryQueryOptions): Promise<Message[]>;

createConversation(options?: {

5

id?: string;

metadata?: Record<string, any>;

}): Promise<string>;

}

This interface can be implemented for various storage solutions:

• SQLite for local development

• MongoDB for document storage

• Redis for high-performance caching

• Custom implementations for specific needs

5 Use Cases and Applications

Maiar’s flexible architecture makes it suitable for a wide range of applications and use
cases. This section explores some key scenarios where Maiar provides significant value.

5.1 Chatbots and Virtual Assistants

Maiar excels in building sophisticated conversational agents:

• Customer Service: Handle customer inquiries across multiple platforms with
consistent behavior

• Virtual Assistants: Create personal assistants that can learn and adapt to user
preferences

• Educational Bots: Develop interactive learning experiences with contextual aware-
ness

5.2 System Integration and Automation

The plugin architecture makes Maiar ideal for system integration:

• DevOps Automation: Create agents that can monitor systems and respond to
incidents

• Workflow Automation: Build intelligent processes that can adapt to changing
conditions

• Data Pipeline Management: Orchestrate complex data flows with intelligent
decision-making

5.3 Research and Development

Maiar provides a powerful platform for AI research:

• Prototype Development: Quickly test new AI agent architectures and behaviors

• Model Evaluation: Compare different LLM providers and configurations

• Behavior Analysis: Study emergent behaviors in AI systems

6

5.4 Enterprise Applications

Organizations can leverage Maiar for various business needs:

• Knowledge Management: Create intelligent systems for organizing and access-
ing information

• Process Automation: Streamline business processes with adaptive AI agents

• Customer Engagement: Build personalized interaction systems across multiple
channels

5.5 Platform Integration

Maiar’s plugin system supports various platforms:

• Chat Platforms: Telegram, Discord, Slack, etc.

• Web Services: REST APIs, WebSocket servers

• Custom Interfaces: Command-line tools, desktop applications

6 Roadmap and Future Work

As Maiar continues to evolve, we are focusing on three transformative areas that will
significantly enhance the framework’s capabilities and developer experience.

6.1 Plugin Ecosystem Platform

We are developing a comprehensive platform to support the Maiar plugin ecosystem:

• Plugin Registry: A centralized marketplace for discovering, sharing, and manag-
ing plugins

• Plugin Analytics: Tools for tracking plugin usage, performance metrics, and
community engagement

• Collaborative Development: Infrastructure for community contributions and
plugin maintenance

• Version Management: Sophisticated tooling for managing plugin dependencies
and compatibility

• Quality Assurance: Automated testing and validation systems for plugin sub-
missions

7

6.2 Multi-Modal Model Integration

We are expanding Maiar’s capabilities to handle multiple AI modalities with intelligent
context switching:

• Dynamic Model Selection: Intelligent routing of requests to the most appropri-
ate model based on context

• Cross-Modal Reasoning: Seamless integration of text, image, audio, and video
understanding

• Context-Aware Switching: Automatic model switching based on task require-
ments and performance metrics

• Unified Context Management: Cohesive handling of context across different
modalities

• Hybrid Model Pipelines: Support for combining multiple models in single pro-
cessing chains

6.3 Bleeding Edge AI Agent Development Tools

We are building next-generation tools to revolutionize AI agent development:

• Visual Plugin Builder: Interactive tools for designing and testing plugin chains

• Real-Time Debugging: Advanced visualization and inspection of agent decision-
making processes

• Behavior Simulation: Tools for testing agent behavior in controlled environments

• Performance Profiling: Sophisticated analytics for optimizing agent performance

• Development IDE Integration: Seamless integration with popular development
environments

7 Conclusion

Maiar represents a significant advancement in the field of AI agent development, in-
troducing a novel approach that combines the flexibility of plugin-based architectures
with the power of LLM-driven decision making. By drawing inspiration from Unix pipes
and emphasizing modularity and composability, Maiar provides a robust foundation for
building the next generation of AI applications.

The framework’s key innovations—plugin-first architecture, dynamic execution pipelines,
and standardized context chains—address many of the limitations found in traditional
agent frameworks. This enables developers to create more adaptable, maintainable, and
scalable AI systems while reducing the complexity typically associated with agent devel-
opment.

As the AI landscape continues to evolve, Maiar’s extensible architecture positions
it well to incorporate new advances in language models, memory systems, and agent
architectures. The framework’s growing ecosystem of plugins and tools, combined with

8

its strong focus on developer experience and enterprise readiness, makes it a compelling
choice for organizations looking to leverage AI agents in their applications.

The future of AI agents lies in frameworks that can adapt to changing requirements
while maintaining reliability and security. Maiar’s approach to these challenges, along
with its comprehensive roadmap for future development, suggests it will play a significant
role in shaping how AI agents are built and deployed in the years to come.

References

[1] Walters, S., Gao, S. et al., Eliza: A Web3 friendly AI Agent Operating System, arXiv
preprint arXiv:2501.06781, 2025.

[2] Ritchie, Dennis M. and Thompson, Ken, The UNIX Time-Sharing System, Commu-
nications of the ACM, 1974.

9

	Introduction
	Background and Related Work
	Technical Overview
	Core Architecture
	Plugin Architecture
	Context Chain
	LLM Integration

	Implementation Details
	Installation and Setup
	Basic Implementation
	Creating Custom Plugins
	Memory Management

	Use Cases and Applications
	Chatbots and Virtual Assistants
	System Integration and Automation
	Research and Development
	Enterprise Applications
	Platform Integration

	Roadmap and Future Work
	Plugin Ecosystem Platform
	Multi-Modal Model Integration
	Bleeding Edge AI Agent Development Tools

	Conclusion

